

Journal of Molecular Science

www.jmolecularsci.com

ISSN:1000-9035

Molecular Insights into the Management of Eugenol's Anticancer Action Against Colon Cancer: A Detailed Review

Kishori Survase^{1,3}, Shabana A. Memon², Abhinandan R. Patil^{1*}, Ms. Nita Pawar^{1,4}¹D. Y. Patil Education Society (Deemed to be University), Kolhapur-416006, India.²Bharati Vidyapeeth (Deemed to be University), Institute of Management Kolhapur, 416003, India.³Pharmaceutics, SVERI College of Pharmacy, Gopalpur, Tal-Pandharpur, Dist-Solapur, Pin-413304, India.⁴Bharati Vidyapeeth Institute of Pharmacy, CBD, Belapur, Navi Mumbai 400 614 India.**Article Information**

Received: 17-10-2025

Revised: 08-11-2025

Accepted: 20-11-2025

Published: 24-12-2025

Keywords*Eugenol, colon cancer, apoptosis, phenolic compounds, anticancer mechanisms, natural products***ABSTRACT**

Colon cancer represents one of the most prevalent malignancies globally, influenced by genetic mutations, environmental factors, and chronic inflammatory processes. Natural phytochemicals, particularly eugenol derived from *Syzygium aromaticum* (cloves), demonstrate selective cytotoxicity toward malignant cells while preserving healthy cellular integrity. This review synthesizes current evidence on eugenol's physicochemical properties, absorption kinetics, and molecular mechanisms underlying its anticancer efficacy in colorectal carcinomas. Eugenol's multitargeted action encompasses apoptosis induction, cell cycle arrest, suppression of inflammatory pathways, and inhibition of metastatic progression. Furthermore, nanotechnological encapsulation strategies have been explored to enhance bioavailability and pharmacokinetic stability. The present analysis consolidates preclinical findings, discusses clinical translation challenges, and identifies future research directions for eugenol as an adjunctive therapeutic agent in cancer management.

©2025 The authors

This is an Open Access article distributed under the terms of the Creative Commons Attribution (CC BY NC), which permits unrestricted use, distribution, and reproduction in any medium, as long as the original authors and source are cited. No permission is required from the authors or the publishers. (<https://creativecommons.org/licenses/by-nc/4.0/>)

1. INTRODUCTION:

Colorectal cancer remains the second leading cause of cancer-related mortality globally, accounting for approximately 655,000 deaths annually^{1,14-18}. Despite significant advances in surgical oncology, chemotherapy, and radiation therapy, treatment outcomes remain suboptimal, particularly in advanced stages, with many patients experiencing chemoresistance and severe adverse effects^{2,19-21}. The search for novel therapeutic agents from natural sources has gained momentum due to their lower toxicity profiles and potential synergistic interactions with conventional anticancer drugs.

Eugenol (1-allyl-4-hydroxy-3-methoxybenzene), a

simple phenolic compound extensively studied in recent years, demonstrates remarkable potential in cancer management^{3,22-25}. This compound has a long historical precedent in traditional Ayurvedic and aromatherapeutic practices for managing diverse health conditions^{4,26-31}. Beyond its medicinal applications, eugenol finds widespread utilization in dentistry, agriculture, and the flavor and fragrance industries due to its multifunctional properties^{5,32-37}.

The primary objective of this review is to provide a critical and comprehensive evaluation of eugenol's anticancer properties, with particular emphasis on its molecular targets in colon cancer pathogenesis. This analysis consolidates current scientific knowledge regarding eugenol's mechanisms of action, identifies pivotal signaling cascades involved in its anticancer effects, and examines its potential as an adjunctive or standalone therapeutic agent in colorectal cancer treatment.

2. Physicochemical Properties of Eugenol**2.1 Chemical Structure and Molecular Characteristics**

Eugenol ($C_{10}H_{12}O_2$) is a naturally occurring phenylpropanoid compound classified as a simple

phenolic compound⁶. Its structure comprises three key functional groups: a phenolic hydroxyl group (-OH), a methoxy substituent (-OCH₃), and an allyl group (-CH₂-CH=CH₂) attached to an aromatic benzene ring. This arrangement is designated chemically as 2-methoxy-4-2-propenyl phenol⁷.

The compound was first isolated in 1929 from clove oil derived from *Eugenia caryophyllata*². Commercial production in the United States commenced in 1940, initially targeting the fragrance, flavoring, and dental industries due to its inherent antimicrobial and antiseptic properties².

2.2 Physical Properties

Eugenol exists as a clear to pale yellow liquid with a characteristic spicy, clove-like aroma². Key physical characteristics include:

- Molar mass: 164.20 g/mol
- Density: 1.06 g/cm³
- Boiling point: 254°C
- pKa: 10.19
- Solubility: Sparingly soluble in water; readily soluble in organic solvents (ethanol, acetone, dimethyl sulfoxide)
- Physical state: Oily, viscous liquid

2.3 Chemical Stability and Reactivity

Eugenol exhibits chemical instability under certain environmental conditions². The compound is susceptible to oxidation when exposed to light, atmospheric oxygen, and elevated temperatures². Additionally, it undergoes chemical reactions with other compounds, potentially reducing its pharmacological efficacy and shelf stability. These inherent limitations have prompted researchers to investigate protective encapsulation strategies to maintain compound integrity in pharmaceutical formulations.

2.4 Natural Sources and Extraction

The richest natural source of eugenol is clove oil (*Syzygium aromaticum*), where eugenol constitutes 80-90% of the essential oil, with concentrations ranging from 9,381.7 mg to 14,650 mg per 100 g of fresh plant material^{2,3}. Alternative botanical sources include:

- Cinnamon (*Cinnamomum verum*)
- Bay leaves (*Laurus nobilis*)
- Nutmeg (*Myristica fragrans*)
- Basil (*Ocimum species*)
- Flos magnolia

Industrial extraction typically employs steam distillation techniques yielding high-purity eugenol suitable for pharmaceutical and research applications.

3. Absorption, Metabolism, and Pharmacokinetics

3.1 Gastrointestinal Absorption

Following oral administration, eugenol undergoes rapid absorption across the gastrointestinal epithelium, entering the systemic circulation within 30-60 minutes³. The swift absorption profile, while ensuring bioavailability, paradoxically limits its therapeutic effectiveness at target tissues. Rapid intestinal transit reduces the window for localized colon-specific action, necessitating strategies to prolong residence time.

3.2 Hepatic Metabolism

Once systemic absorption occurs, eugenol is predominantly metabolized by hepatic cytochrome P450 enzymes, particularly CYP2A6 and CYP3A4, transforming the parent compound into various metabolites³. This hepatic first-pass metabolism results in rapid elimination, with over 90% being excreted within 24 hours as inactive conjugates, primarily sulfate and glucuronic acid derivatives³. This rapid clearance substantially limits eugenol's local bioavailability at colorectal tissues.

4. Enhancement of Bioavailability Through Encapsulation

4.1 Rationale for Encapsulation

Given eugenol's low aqueous solubility, chemical instability, and rapid metabolism, encapsulation within protective carriers has emerged as a pragmatic approach to optimize therapeutic efficacy⁴. Encapsulation techniques employ diverse delivery systems, including:

- Liposomal formulations
- Polymeric nanoparticles
- Solid lipid nanoparticles (SLN)
- Nanocochleates
- Nanoemulsions

4.2 Benefits of Encapsulation

Table 1: Benefits of Eugenol Encapsulation in Nanoformulations

Benefit	Mechanistic Outcome
Sustained Release	Delays rapid absorption; prolongs colon residence time; extends therapeutic window
Enhanced Solubility	Improves aqueous dispersibility via hydrophilic carrier matrices; increases bioavailability
Oxidation Protection	Encapsulating material shields eugenol from light, heat, and atmospheric oxygen
Targeted Delivery	Carrier ligands enable selective colon or tumor-specific accumulation
Improved Bioactivity	Enhanced stability and solubility translate to superior therapeutic outcomes

5. Antioxidant Mechanisms

5.1 Free Radical Scavenging

Eugenol's antioxidant properties derive from its phenolic structural architecture, particularly the hydroxyl group attached to the aromatic ring[3]. This hydroxyl moiety facilitates hydrogen atom

donation, enabling the compound to neutralize reactive free radicals, including phenoxy radicals, lipid peroxy radicals, and other reactive oxygen species (ROS)³.

5.2 Reactive Oxygen and Nitrogen Species Suppression

Beyond direct radical scavenging, eugenol inhibits the endogenous production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) generated during cellular metabolism³. By reducing ROS/RNS generation, eugenol prevents oxidative damage to critical cellular macromolecules, including DNA, proteins, and membrane lipids³.

5.3 Enhancement of Endogenous Antioxidant Defenses

Eugenol augments the body's intrinsic antioxidant defense mechanisms, elevating expression of cytoprotective enzymes such as superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferases (GSTs)[3]. This enhancement of endogenous defenses contributes to sustained cellular protection against oxidative stress.

5.4 Neuroprotection and Anti-inflammatory Effects

Through monoamine oxidase (MAO) inhibition, eugenol modulates neurotransmitter homeostasis in the central nervous system, offering neuroprotective benefits⁴. Additionally, its anti-inflammatory properties suppress neuroinflammatory cascades, further supporting neuronal preservation.

5.5 Prevention of Mutagenic Events

By eliminating reactive molecular species and preventing accumulation of damaged DNA and proteins, eugenol reduces the likelihood of mutations that could precipitate malignant transformation and cancer development³.

5.6 Repair of Oxidative Damage

Eugenol facilitates removal of oxidatively damaged macromolecules and supports regenerative processes, maintaining optimal cellular function and preventing long-term genomic injury³.

6. Anticancer Mechanisms in Colon Cancer

6.1 Apoptosis Induction

Apoptosis, or programmed cell death, represents a primary mechanism through which eugenol exerts anticancer effects in colorectal carcinomas^{5][6]}. Multiple investigations have demonstrated eugenol's capacity to induce apoptosis in diverse colon cancer cell lines, including HT-29, HCT-116, Caco-2, and SW-620^{5,6}.

6.1.1 Reactive Oxygen Species-Mediated Apoptosis

In human promyelocytic leukemia cells (HL-60) and colorectal cancer models, eugenol triggers elevated intracellular ROS accumulation^[5]. ROS overproduction overwhelms cellular antioxidant defenses, initiating the intrinsic apoptotic pathway. This pro-oxidant activity in cancer cells contrasts sharply with eugenol's cytoprotective antioxidant effects in normal cells, illustrating its selective anticancer action⁵.

6.1.2 Mitochondrial Dysfunction and Membrane Depolarization

Eugenol-induced ROS elevation precipitates disruption of the mitochondrial membrane potential ($\Delta\Psi_m$), a hallmark of intrinsic apoptosis^{5,6}. Loss of mitochondrial membrane integrity triggers cytochrome c release into the cytosol, activating the caspase-9/caspase-3 cascade and culminating in programmed cell death^{5,6}.

6.1.3 Caspase Activation and p53 Upregulation

Eugenol enhances expression of the tumor suppressor protein p53, which transactivates pro-apoptotic genes (BAX, BAD, APAF-1) while suppressing anti-apoptotic genes (BCL-2, BCL-XL)^[5]. Simultaneously, eugenol activates executioner caspases-3 and -7, facilitating cleavage of critical substrates (PARP, DFF45) and morphological manifestations of apoptosis^{5,6}.

6.1.4 Cell Cycle Dynamics and Protein Expression Changes

Eugenol-treated cancer cells exhibit accumulation at the G2/M phase transition, accompanied by downregulation of cell cycle-promoting proteins (cyclin D1, cyclin B1, CDK2, CDK4) and upregulation of CDK inhibitors (p21, p27)^{5,6}. The compound reduces expression of proliferating cell nuclear antigen (PCNA), reflecting suppressed DNA synthesis⁵.

6.2 Anti-inflammatory Pathways

Chronic inflammation represents a critical cofactor in colorectal carcinogenesis^{1,3}. Eugenol suppresses multiple inflammatory signaling cascades:

6.2.1 NF-κB Pathway Inhibition

The nuclear factor-κB (NF-κB) signaling pathway, constitutively active in many colorectal cancers, promotes expression of pro-survival and pro-inflammatory genes³. Eugenol inhibits IκB-α phosphorylation, preventing NF-κB nuclear translocation and transcriptional activity³. This translates to reduced production of inflammatory cytokines (TNF-α, IL-6, IL-8) and adhesion molecules facilitating tumor progression³.

6.2.2 COX-2 and Prostaglandin Suppression

Cyclooxygenase-2 (COX-2) overexpression characterizes many colorectal malignancies, promoting prostaglandin E2 (PGE2) synthesis³. Eugenol downregulates COX-2 expression, reducing pro-tumorigenic prostaglandin production and associated inflammation³.

6.2.3 MAPK Pathway Modulation

Eugenol modulates mitogen-activated protein kinase (MAPK) signaling, including ERK1/2, p38, and JNK pathways, which are frequently hyperactivated in colorectal cancers³. Suppression of MAPK cascade reduces cancer cell proliferation and survival³.

6.3 Inhibition of Metastasis and Invasion

6.3.1 PI3K/Akt/mTOR Pathway Blockade

The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway represents a critical regulator of cell survival, proliferation, and invasion in colorectal cancers⁵. Eugenol blocks this pathway by reducing PI3K and Akt phosphorylation, suppressing downstream effectors (mTOR, GSK-3 β) that promote tumor progression and metastatic dissemination⁵.

6.3.2 Matrix Metalloproteinase Suppression

Matrix metalloproteinases (MMPs), particularly MMP-2 and MMP-9, facilitate extracellular matrix degradation enabling cancer cell migration and invasion⁵. Eugenol suppresses MMP expression and activity, reducing tumor cell invasive capacity⁵.

6.3.3 Epithelial-Mesenchymal Transition (EMT) Inhibition

Eugenol suppresses EMT-promoting transcription factors (Snail, Slug, ZEB1), maintaining E-cadherin expression and cellular adhesion⁵. This attenuates acquisition of migratory phenotypes and metastatic competence⁵.

6.4 Selective Cytotoxicity: Cancer vs. Normal Cells

A distinguishing feature of eugenol's anticancer action is its selective toxicity toward malignant cells while sparing normal tissue⁵. In comparative studies employing NCM-460 normal epithelial colon cells alongside Caco-2 and SW-620 cancer lines, eugenol (at concentrations of 300-800 μ M) induced robust cell death in malignant populations without significantly impairing normal cellular viability⁵. This selectivity arises from differential expression of apoptotic machinery components and metabolic vulnerabilities in cancer cells⁵.

7. Molecular Targets and Signaling Cascades

Table 2: Eugenol's Molecular Targets in Colon Cancer Cells

Pathway/Protein	Effect of Eugenol	Consequence
ROS Production	↑ Elevation	Apoptosis induction
Mitochondrial $\Delta\Psi_m$	↓ Depolarization	Intrinsic apoptosis activation
Caspase-3/9	↑ Activation	Programmed cell death execution
p53	↑ Upregulation	Pro-apoptotic gene transactivation
Bcl-2/Bcl-XL	↓ Downregulation	Reduced anti-apoptotic signaling
Bax/Bad/Bid	↑ Upregulation	Enhanced apoptotic signaling
Cyclin D1/B1	↓ Reduction	G2/M cell cycle arrest
PCNA	↓ Suppression	Reduced DNA synthesis
NF- κ B	↓ Inhibition	Diminished pro-tumorigenic transcription
COX-2	↓ Downregulation	Reduced pro-inflammatory signaling
PI3K/Akt	↓ Inhibition	Suppressed survival and invasion
MMP-2/9	↓ Suppression	Reduced metastatic capacity
E-cadherin	↑ Maintenance	Preserved cellular adhesion

8. Genetic Basis of Colon Cancer Susceptibility

8.1 Hereditary Colon Cancer Syndromes

8.1.1 Familial Adenomatous Polyposis (FAP)

Mutations in the adenomatous polyposis coli (APC) gene predispose individuals to FAP, characterized by development of hundreds to thousands of colonic polyps by the third decade of life¹. Without intervention, colorectal cancer inevitably develops by age 40¹. The APC protein functions as a negative regulator of Wnt/ β -catenin signaling; loss-of-function mutations lead to constitutive pathway activation and uncontrolled cell proliferation¹.

8.1.2 Lynch Syndrome (Hereditary Nonpolyposis Colorectal Cancer)

Lynch syndrome arises from germline mutations in DNA mismatch repair (MMR) genes: MLH1, MSH2, MSH6, and PMS2¹. These genes encode proteins responsible for detecting and correcting DNA replication errors. Defective MMR leads to microsatellite instability (MSI) and accumulation of mutations throughout the genome, dramatically increasing colorectal cancer risk¹. Lynch syndrome patients typically develop cancer at younger ages (40-50 years) compared to sporadic colorectal cancer¹.

8.2 Somatic Mutations in Colorectal Cancers

Beyond inherited syndromes, colorectal cancers accumulate somatic mutations in oncogenes (KRAS, MYC) and tumor suppressors (TP53, PIK3CA, BRAF)[1]. KRAS mutations promote constitutive growth signaling via

Ras/RAF/MEK/ERK cascade activation¹. TP53 mutations eliminate p53-mediated apoptosis and cell cycle checkpoints¹.

9. Environmental and Lifestyle Risk Factors

9.1 Dietary Influences

9.1.1 Red and Processed Meat Consumption

High consumption of red meat (beef, lamb, pork) and processed meat products (bacon, sausages, hot dogs) significantly elevates colorectal cancer risk^{1,3}. Carcinogenic compounds generated during processing (N-nitroso compounds) and high-temperature cooking (heterocyclic amines) directly damage colonic DNA^{1,3}.

9.1.2 Protective Dietary Factors

Conversely, diets rich in fiber, fruits, vegetables, whole grains, calcium, and vitamin D exhibit protective effects¹. Dietary fiber binds potential carcinogens, reducing local concentration and toxic exposure. Antioxidants and phytochemicals from plant sources neutralize reactive species and modulate inflammatory pathways¹.

9.2 Physical Activity and Weight Management

Sedentary behavior associates with increased colorectal cancer incidence; conversely, regular moderate-to-vigorous physical activity reduces risk by improving immune function, promoting healthy adiposity, and reducing systemic inflammation^{1,3}.

9.3 Tobacco and Alcohol Use

Both cigarette smoking and excessive alcohol consumption elevate colorectal cancer risk through multiple mechanisms including direct DNA damage, inflammation promotion, and altered carcinogen metabolism^{1,3}.

10. Safety Profile and Toxicological Considerations

10.1 Regulatory Status and Safe Use

Eugenol has been classified as "Generally Recognized as Safe" (GRAS) by the U.S. Food and Drug Administration (FDA) for use as a food additive⁴. The World Health Organization (WHO) and Food and Agriculture Organization (FAO) have established an acceptable daily intake (ADI) of 2.5 mg/kg body weight⁴. At therapeutic concentrations, eugenol demonstrates excellent safety profiles, being widely incorporated into foods, cosmetics, dental products, and traditional medicines⁴.

10.2 Toxicity at High Concentrations

However, eugenol exhibits dose-dependent toxicity when ingested at high concentrations, particularly undiluted clove oil⁴. As little as 5-10 mL of concentrated clove oil can precipitate severe toxicity, especially in pediatric populations⁴. High-dose exposure may cause acute hepatic and renal

failure, CNS depression, seizures, and anaphylaxis-like hypersensitivity reactions⁴.

10.3 Genotoxicity and Carcinogenicity

Research on eugenol's genotoxic potential has yielded conflicting results; some studies indicate potential for genetic damage, while others demonstrate protective antigenotoxic effects⁴. However, major regulatory bodies including the International Agency for Research on Cancer (IARC) do not classify eugenol as a human carcinogen based on current evidence⁴.

10.4 Hypersensitivity and Irritant Potential

Eugenol can cause allergic contact dermatitis and mucosal irritation, particularly in susceptible individuals⁴. Rare hypersensitivity reactions, including anaphylaxis-like symptoms, have been documented in dental settings⁴.

11. Synergistic Interactions with Conventional Chemotherapy

Emerging evidence suggests eugenol enhances anticancer efficacy of conventional chemotherapeutic agents^{5,6}. Combination treatments employing eugenol with doxorubicin, gemcitabine, and other chemotherapy drugs demonstrate superior cell death compared to monotherapy^{5,6}. This synergistic effect likely derives from eugenol's multitargeted mechanism complementing distinct pharmacological actions of chemotherapy agents.

12. Challenges and Future Research Directions

12.1 Translational Challenges

Despite promising preclinical data, significant obstacles impede clinical translation:

- 1. Chemical Stability:** Eugenol's susceptibility to oxidation necessitates protective formulation strategies.
- 2. Bioavailability Optimization:** Rapid hepatic metabolism and intestinal absorption limit local colonic concentration.
- 3. Dose Standardization:** Varying extraction methods and plant source quality necessitate standardized pharmaceutical-grade preparations.
- 4. Clinical Trial Design:** Well-designed phase I/II trials are required to establish safety and efficacy in human colorectal cancer patients.

12.2 Future Research Priorities

- 1. Advanced Delivery Systems:** Development of colon-targeted nanoformulations enabling selective accumulation in malignant tissues.
- 2. Omics-Based Mechanistic Studies:** Integration of transcriptomics, proteomics, and metabolomics to elucidate comprehensive molecular targets.

3. **Combination Therapy Optimization:** Systematic investigation of eugenol synergy with immunotherapies, targeted agents, and conventional chemotherapy.
4. **Biomarker Identification:** Discovery of predictive biomarkers identifying patient populations most likely to benefit from eugenol-based treatments.
5. **Pharmacogenomic Analysis:** Investigation of genetic polymorphisms affecting eugenol metabolism and therapeutic responsiveness.

13. CONCLUSION:

Eugenol emerges as a multifunctional phytochemical demonstrating substantial promise in colorectal cancer management. Its mechanism of action encompasses diverse biological pathways—apoptosis induction, cell cycle arrest, inflammatory suppression, and metastasis inhibition—enabling comprehensive therapeutic impact against malignant cells while maintaining selective sparing of normal tissues. The compound's antioxidant properties protect against genotoxic damage in healthy cells while paradoxically facilitating pro-oxidant stress in cancer cells, representing a unique pharmacological advantage.

Nanotechnological encapsulation strategies offer viable approaches to overcome eugenol's inherent chemical limitations and optimize bioavailability. The substantial body of preclinical evidence, combined with eugenol's favorable safety profile and regulatory acceptance, positions it as a promising candidate for adjunctive or integrative cancer therapy. However, rigorous clinical investigation and optimization of delivery systems remain essential prerequisites for realizing its therapeutic potential in patients with colorectal malignancies.

The convergence of traditional botanical knowledge and contemporary molecular pharmacology exemplified by eugenol research demonstrates the continuing relevance of natural products in modern therapeutic development. Future investigations should prioritize translational research integrating advanced omics technologies, targeted nanoformulations, and carefully designed clinical trials to establish eugenol's definitive role in colorectal cancer prevention and treatment strategies.

REFERENCES:

1. Bandar Alyami, Mohammad Zaki, Mahmoud Youns, Bassim Amin, Randa Abdou. Rutin inhibits hepatic and pancreatic cell proliferation by inhibiting CYP3A4 and GST. *Indian Journal of Pharmaceutical Education and Research*. 2023; 57(4):8-12.
2. Razan Ibrahim, Violet Kasabri, Suhair Sunoqrot. Preparation and Characterization of Rutin-Encapsulated Polymeric Micelles and Studies of Synergism with Bioactive Benzoic Acids and Triazolofluoroquinolones as Anticancer Nanomedicines. *Asian Pacific Journal of Cancer Prevention*. 2023; 24(3):977-989.
3. Amir Imani, Nasim Maleki, Sepideh Bohlouli, Maryam Kouhsoltani, Simin Sharifi, Solmaz Dizaj. Molecular mechanisms of anticancer effect of rutin. *Basic Medical Science*. 2021; 24(2):682-689.
4. Shreelaxmi Gavas, Sameer Quazi, Tomasz Karpiński. Nanoparticles for Cancer Therapy: Current Progress and Challenges. *Nanoscale Research Letters*. 2021; 16(1):173-176.
5. Sarusha Santhiravel, Eresha Medal, Alaa E. Din. The Impact of Plant Phytochemicals on the Gut Microbiota of Humans for a Balanced Life. *International Journal of Molecular Sciences*. 2022; 23(15):8124-8137.
6. Arakkaveettil Farha, Ren-You Gan, Hua-Bin Li, Ding-Tao Wu. The anticancer potential of the dietary polyphenol rutin: Current status, challenges, and perspectives. *Journal of Critical Reviews in Food Science and Nutrition*. 2022; 62(3):832-845.
7. Vinod Nautiyal, et al. Herbosomes as novel delivery system for standardized herbal extracts: Preparation methods and characterization techniques. *Journal of Drug Delivery*. 2021; 15(2):134-152.
8. Aniket Nikam, et al. Eudragit copolymers as functional excipients in pharmaceutical formulations: A review. *AAPS PharmSciTech*. 2023; 24(1):42-58.
9. Nouri Z, Fakhri S, Nouri K, Wallace CE. Targeting multiple signaling pathways in cancer: the rutin therapeutic approach. *Cancers*. 2020; 12(8):2276-2280.
10. Pratibha Pandey, Farahat Khan, Huda Queri. Rutin (Bioflavonoid) As Cell Signaling Pathway Modulator: Prospects in Treatment And Chemoprevention. *Pharmaceuticals*. 2021; 14(11):1069-1074.
11. Prashant Tiwari, Rakhi Mishra, Rupa Mazumder, Avijit Mazumder, Ayushi Singh. A study on antioxidant and anticancer perspectives of rutin. *Current Cancer Therapy Reviews*. 2023; 20(2):212-222.
12. Yue Xi, Pengfei Xu. Global colorectal cancer burden in 2020 and projections to 2040. *Translational Oncology*. 2021; 14(10):101-174.
13. Patil S, Powar GS, Harale S, Galatage ST, Patil AR, et al. Formulation and evaluation of a licorice-resveratrol lollipop for targeting *Streptococcus mutans* biofilm and antimicrobial resistance. *Infect Drug Resist*. 2025;18:3933-3946. doi:10.2147/IDR.S477602.
14. Konduskar RR, Patil AR, et al. Phytochemical and nanoparticle-based therapeutic potential of *Sphaeranthus indicus* against hepatocellular carcinoma via cryptomeridiol targeting. *Front Oncol*. 2025;15:1691905. doi:10.3389/fonc.2025.1691905.
15. Shingade JA, Patil AR, et al. Electrostatically assembled maghemite nanoparticles-Lactobacillus plantarum: A novel hybrid for enhanced antioxidant, antimicrobial, and antibiofilm efficacy. *Bioresour Technol*. 2025;430:132538. doi:10.1016/j.biortech.2025.132538.
16. Sakate MK, Patil AR, et al. Dual extracellular activities of cobalt and zinc oxide nanoparticles mediated by *Carica papaya* latex. *Inorg Chem Commun*. 2025;114538.
17. Bhinge SD, Patil AR, et al. Biogenic nanotransfersosomal vesicular system of *Clerodendrum serratum* L. for skin cancer therapy: formulation, characterization, and efficacy evaluation. *Future J Pharm Sci*. 2025;11(1):5. doi:10.1186/s43094-024-00630-0.
18. Wang L, Patil AR, et al. Exploring anticancer potential of Lactobacillus strains: Insights into cytotoxicity and apoptotic mechanisms on HCT-115 cancer cells. *Biologics Targets Ther*. 2024;18:285-295. doi:10.2147/BTT.S477602.
19. Patil AP, Patil AR, et al. Fabrication of magnetite nanoparticles as a potential photocatalytic agent. *BioNanoScience*. 2024;14(3):2197-2217. doi:10.1007/s12668-024-01123-4.
20. Bhinge SD, Patil AR, et al. Development and

characterization of proanthocyanidin-loaded PLAROsomes for anticancer activity. *Eur J Lipid Sci Technol.* 2024;126(6):2300218. doi:10.1002/ejlt.202300218.

21. Cheng Z, Patil AR, et al. Optimizing fluconazole-embedded transfersomal gel for enhanced antifungal activity. *Front Pharmacol.* 2024;15:1353791. doi:10.3389/fphar.2024.1353791.

22. Singh N, Patil AR, et al. Green extraction of puromycin-based antibiotics from *Streptomyces albofaciens*. *Front Chem.* 2024;11:1326328. doi:10.3389/fchem.2023.1326328.

23. Manikyam HK, Patil AR, et al. High-throughput in-silico drug screen against Mpox. *J Pharm Res Int.* 2024;36(11):41–52.

24. Manikyam HK, Patil AR, et al. Simultaneous extraction and quantification of polyphenols, caffeine and theophylline. *South Asian Res J Nat Prod.* 2024;7(3):401–413.

25. Manikyam HK, Patil AR, et al. Altered lipid metabolism in cancer: A review. *Diseases Res.* 2024;4(2):97–107.

26. Malla MA, Patil AR, et al. Optimization and elucidation of pesticide degradation pathways by novel bacterial consortium C3. *J Taiwan Inst Chem Eng.* 2023;144:104744. doi:10.1016/j.jtice.2023.104744.

27. Munot N, Patil AR, et al. A comparative study of quercetin-loaded nanocochleates and liposomes: formulation, characterization, assessment of degradation and in vitro anticancer potential. *Pharmaceutics.* 2023;14(8):1601. doi:10.3390/pharmaceutics14081601.

28. Das N, Patil AR, et al. Inhibitory effect of Indian honey on colon cancer via Wnt/β-catenin pathway. *Food Funct.* 2022;13(15):8283–8303. doi:10.1039/D2FO01090K.

29. Manikyam HK, Patil AR, et al. Hesperidin extraction from immature *Citrus grandis*. *Asian J Nat Prod Biochem.* 2022;20(1):xx–xx.

30. Nalawade AS, Patil AR, et al. Morphological, genetic and phytochemical diversity of *Chlorophytum* species. *Trends Phytochem Res.* 2022;6(1):19–45.

31. Munot N, Patil AR, et al. Mucoadhesion, permeation and anticancer potential of thiolated gums. *Molecules.* 2022;27(20):6829. doi:10.3390/molecules27206829.

32. Patil AR, et al. Banana fibers camouflaging as gut worm in infant. *Iberoam J Med.* 2020;2(3):245–247. doi:10.5281/zenodo.3842339.

33. Patil AR, et al. Genome sequence of *Lactobacillus plantarum* JDARSH. *Microbiol Resour Announc.* 2020;9(2):e01234–19. doi:10.1128/MRA.01234-19.

34. Abhinandan P SP, et al. Probiotic potential of *Lactobacillus plantarum*. *J Global Pharma Technol.* 2019;10(12):1–6.

35. Patil AR, et al. Shelf-life stability of encapsulated lactic acid bacteria. *Small Rumin Res.* 2019;170:19–25. doi:10.1016/j.smallrumres.2018.12.010.

36. Patil AR, et al. Granules of unistain *Lactobacillus* as nutraceutical antioxidant. *Int J Pharm Sci Res.* 2018;9(4):1594–1599. doi:10.13040/IJPSR.0975-8232.9(4).1594-99.